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Controlling chaos in unidimensional maps using macroevolutionary algorithms
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We introduce a simple search algorithm that explores the parameter of periodically perturbed discrete maps
in order to find desired orbits through chaos control. The method has been applied to one-dimensional maps but
is easily extendable to higher-dimensional systems. Here, we consider two types of chaos control involving
proportional pulses in the system variables@Phys. Rev. Lett.72, 1455 ~1994!# and constant feedback@Phys.
Rev. E51, 6239 ~1995!#, the first case being presented in detail. It is shown that our method allows a rapid
exploration of parameter space and the finding of high-fitness~i.e., controlled! solutions close to the target
orbits, even when high periodicities are required.
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I. INTRODUCTION

Chaotic behavior in nonlinear dynamical systems
known to be suppressed under some given conditions
using periodic perturbations@1,2#. These techniques of chao
control, particularly the method discovered by Ott, Grebo
and Yorke~OGY! @1# have been shown to work particular
well on systems involving low-dimensional dynamical sy
tems of many types. Further modifications of the OG
method have been able to stabilize high-periodic orbits@3#.
Some of these methods have been successfully applie
experimental systems. The implications of these results
deep, since chaos control can be used to manipulate dyn
cal patterns in real systems and can also be used as a s
of stabilization in population dynamics or neural networ
@2,4#. Extensions to spatial systems have also been de
oped, with potential implications in therapy@5#.

There are several known types of chaos control and
well-known ways of performing such control:~a! by manipu-
lating the system so as to modify its behavior from chaos
a given desired periodic orbit and~b! by stabilizing unstable
periodic orbits embedded into the strange attractor. T
simple techniques of chaos control, the so-called prop
tional @6# and constant feedback@7# methods, have been suc
cessfully applied to low-dimensional systems of differe
types and, more recently, to the control of spatial chaos@8#.

These techniques can be used to control both discrete
continuous systems and have the advantage of not need
detailed knowledge of the system’s orbits. Two simple me
ods have been recently proposed: the Gu¨émez-Matı´as
method@7# and the Parthasarathy-Sinha method@6#.

We are interested in controllingp-periodic orbits in one-
dimensional discrete maps of the form

xn115 f m~xn!, ~1.1!

where f m(x) is a single-parameter quadratic map andx be-
long to space stateV. In our paper, we have used the logis
map defined by
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xn1154mxn~12xn!, ~1.2!

where mP@0,1# and V5@0,1#. For m.mc50.892 47, . . . ,
chaotic dynamics starts to appear. The underlying idea
chaos control is that the chaotic solutions at this domain
parameter space contain an infinite number of periodic,
stable solutions

Om
(p)5$x1* , . . . ,xp* ;xi* 5 f m

p ~xi* !,; i %, ~1.3!

which can be stabilized under appropriate periodic pertur
tions. The presence of these periodic orbits has impor
consequences. Chaos control has been successfully ap
to several biological systems such as heart@9# and brain@10#
dynamics and has been suggested to be feasible in con
ling experimental ecological systems@11#.

An obvious problem emerging from the study of cha
control is the choice of the appropriate parameters toge
with the potential high periodicity of the desired orbits to
stabilized. When a good knowledge of the system is av
able, some methods~such as OGY! allow to define a clear
criterion of control by applying small feedback to one of t
accessible system parameters. These methods have bee
lyzed in depth. However, in many cases, sucha priori
knowledge of the dynamics of the system~such as the loca-
tion of stable fixed points! is not available. Besides, succes
ful control is often limited to low-periodic orbits.

Other methods have been used involving rather nons
cific changes in the system variables. One of them@6#
applies—in an additive way—a constant feedback (g), i.e.,

xn115 f m~xn!1g, ~1.4!

wheregP@21,1# gives the strength of the pulse~and will be
used as relevant parameter in the search algorithm, see
low!.

Another control algorithm@7# has been shown to stabiliz
chaotic systems by applying proportional pulses to the s
tem variables. In this method, everyp iterations, a pulse of
strengthgP@21,1# is applied as follows:
©2002 The American Physical Society07-1
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JESUS MARI´N AND RICARD V. SOLÉ PHYSICAL REVIEW E 65 026207
xn115 f m~xn!~11g! for ~n mod p!50,

xn115 f m~xn! otherwise. ~1.5!

Most previous studies involving these nonparametric p
turbation methods considered specific values of the con
parameters but no general method for finding them was s
ied. The problem considered here is: given a target orbi
periodp

T(p)5$x18 ,x28 , . . . ,xp8 ;xi8PV%, ~1.6!

is it possible to find the set of conditions allowing the sta
lization of Om towardT(p) for a givenm?

Since there is no analytic treatment to this problem,
alternative method is a search in parameter space thro
some suitable algorithm. In a previous study by Weeks
Burguess@12#, it was shown that a neural network-trainin
method based on genetic algorithm evolution was able
control chaotic maps in one and two dimensions. More
cently @13#, genetic algorithms have been used in local co
trol to stabilize equilibrium points. Other techniques@14,15#
are based on a reinforcement learning procedure in orde
find the best control strategy to be applied from a set w
prefixed control values.

Such methods required no previous knowledge about
system to be controlled, and all of them have been show
work when fixed points or low-periodic orbits are the targ
to be reached. However, high-periodic orbits are seldom c
sidered. Following the same lines~i.e., by exploring the pa-
rameter space through evolutionary search!, we consider a
simple evolutionary algorithm globally searching those co
trol parameter from a continuous interval of values such t
the controlled orbit is closest to the desired targetT(p), which
can have high periodicity.

The paper is organized as follows: in Sec. II, the meth
is presented. In Sec. III, the results of the stabilization
several orbits are analyzed. In Sec. IV, our main results
possible extensions are discussed.

II. SEARCH METHOD

Our search method is based on a modification of a pr
ous study of evolutionary optimization on fitness landsca
@16,17#. A first step in our application requires an appropria
definition of a fitness function or objective functionF to be
maximized, comparing our given target orbitT(p) with the
candidate orbit

Om,g
(qi )5$x1* , . . . ,xqi

* %. ~2.1!

Hereqi indicates the periodicity of this orbit~which may or
not be equal top). Om,g

(qi ) will be generated fixingm and
applying a perturbationg with periodicity p using control
defined in Eqs.~1.5! or ~1.4! over system.

The proposed fitness function uses a periodicity simila
measure betweenqi and p(sper), and a similarity measure
between points in orbits (sorb), so as follows:

F~u!5spersorb , ~2.2!
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where u is a vector within parameters to optimize. In o
case,u5$g%, although this could also includem.

These are the criteria followed in order to define simila
ity measures:

~1! The difference between the periodicity of thei th can-
didate orbit (qi) and the target orbit~p! must to be minimal.
For this reason we define periodicity similarity measure
<sper<1) as

sper512eperuqi2pu, ~2.3!

whereeper is the precision in the points that define the targ
orbit ~here we useeorb51023). That means that state spac
V has been discretized into (1/eper)-sized bins in order to
estimateqi .

~2! An error measured between the points belonging t
the target orbit (T(p)) and the points belonging to the cand
date orbit (Om,g

(q) ) is defined as

d5
1

k (
j 51

k

uT(p)@11~ j mod p!#

2Om,g
(qi )@11~ j mod qi !#u2, ~2.4!

wherek is the minimum common multiple of$p,qi% in order
to guarantee all points of both orbits will be considered. W
define the similarity measure between both orbitssorb
P@0,1#, normalizing in power scale

sorb50 if ' j P@1,qi #:Om,g
(qi )~ j !¹V,

sorb52log2(eorb)Ad otherwise ~2.5!

where eorb is the accuracy used~in our simulations,eorb
51/256). The choice of the logarithm scaling has been m
in order to enhance the differences in the underlying fitn
landscape and thus shorten the search time.

We have defined the problem in terms of an optimizat
of the fitness functionF(u). We can apply some optimizatio
method in order to find the strength of pulse (gP@21,1#)
that maximizesF($g%). Some methods, such as genetic
gorithms@18–20#, random search@21#, and macroevolution-
ary algorithms~MA ! @16,17# have been tested, being the la
one the more efficient and simple in implementation.

The macroevolutionary algorithm was developed as
simple alternative to genetic algorithms. As these, MA op
mizes a fitness function through a parallel search usin
constant numberN of possible candidate solutions~popula-
tion!. The populationM evolves at each time step~genera-
tion! by applying operators acting over each solution can
date. However, MA has monotonous convergence do
easier tunning algorithm parameters, and allows us to
better solutions using under less computationally costly c
ditions.

These specific operators for MA can be summarized
follows:

~1! Selection operator: it allows us to decide which are
candidate solutions surviving in the next generation. T
stateSi of a given candidateuiPM will be given by
7-2
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Si~ t11!5alive for F~ui !>(
j 51

N
F~uj !

N
,

Si~ t11!5extinct otherwise, ~2.6!

wheret is generation number.
~2! Colonization operator: it allows us to fill extinct can-

didates in two ways. With a probabilityt, a totally random
solutionur will be generated. In our case, the random so
tion is simply a random numbergP@21,1# with uniform
distribution. Otherwise, exploitation of surviving solution
takes place through colonization: the extinct solution will
attracted towards the best-fitness solution of population (ub).
Mathematically, this reads as

ui~ t11!5ub~ t !1rl@ub~ t !2ui~ t !# for j.t,

ui~ t11!5ur for j<t, ~2.7!

where jP@0,1# is a random number,lP@21,11# ~both
with uniform distribution! andr andt are given constants o
our algorithm. So, we can see thatr describes a maximum
radius around surviving solutions andt acts as a temperatur
parameter.

In our case, a candidate solutionu consists of a strength
of pulse (g) with a predefined parameter range (gP@21,
11#). All simulations has been performed using a popu
tion of N5100 candidates alongG5100 generations, with
algorithm parametersr50.5 andt varying ~such as in simu-
lated annealing@22#! using a sigmoidal function defined by

t~ t !5
1

11ec(t2G/2)
~2.8!

with a slopec50.2.
The complete algorithm is presented in Fig. 1.

III. RESULTS

The target orbits have been chosen from the bifurca
scenarios generated by usingm parameters in the chaoti
domain of the logistic map. These scenarios have been
tained by using different values ofp andg. Once a givenp
has been chosen, we have numerically simulated the dyn
ics of the perturbed map by applying different strengths. T
leads to a rich variety of orbits of many different periodic
ties. From these orbits we chose a few as target solut
~listed in Table I!. Here, lowp52 but also highp513 pe-
riodicities have been used.

Let us first consider the observed structure of the fitn
landscapes. In Fig. 2~a!, the Lyapunov exponent correspon
ing to a logistic map with periodic perturbations each fo
iterations is shown. In Figs. 2~b! and 2~c!, we have plotted
the fitness landscapesF($g,m%) of different orbits by vary-
ing m andg ~here, darker points mean higher fitness value!.
Orbits #2 and #6 have been used~see Table I.! Not surpris-
ingly, the functionF($g,m%) in Fig. 2~b! shows a close re
semblance with the Lyapunov plot shown in Fig. 2~a!. This is
due to the underlying relationship between orbit complex
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and fitness. The Lyapunov map structure shown in the fi
plot has been in fact deeply analyzed by M. Markus a
co-workers@23#. For this particular case of low periodicity
the landscape appears rather smooth~with a few, localized
exceptions! and one can imagine that a hill climbing by
standard evolutionary search algorithm will work well. B
we can see that the landscape associated to the second
is much more rugged, with sharp, thin highly fit domains~as
the small horned structure on the upper-left part!. The situa-
tion gets worse as periodicity increases.

As an example, in Fig. 3~a! we show the bifurcation dia-
gram that includes orbit #4~with m50.99) as a thin periodic
window. Here, the control parameter is the streng
gP@21,11# ~see Tables I and II!. For positive values of the
pulse strength no bounded orbit is found. The periodic w
dows displayed by this diagram are all very localized and
target is shown in the inset plot~for 20.08,g,20.07).

FIG. 1. Summary of optimization process to control unidime
sional maps using macroevolutionary algorithms.

TABLE I. Table with the target orbits that have been used in
simulations.

# orbit T(p), Om,g
(p)

1 0.710 0.236
2 0.841 0.481 0.899 0.372
3 0.344 0.848 0.485 0.898
4 0.316 0.856 0.490 0.913
5 0.788 0.601 0.863 0.425 0.324
6 0.231 0.676 0.834 0.527 0.131 0.434 0.935
7 0.900 0.338 0.806 0.564 0.885 0.365 0.835 0.497
8 0.687 0.769 0.635 0.830 0.506 0.895 0.337 0.800

0.573 0.876 0.390 0.079 0.259
7-3
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FIG. 2. Varyingm and strength
of pulse (g). In ~a!, Lyapunov ex-
ponent for orbit #2 is represente
(p54). In ~b!, fitness function
F($g,m%) ~high values in black!
for orbit #2. In~c!, fitness function
F($g,m%) for orbit #6 (p57).
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The corresponding fitness, multipeaked landscape is sh
in Fig. 3~b!. The same plots for the orbit #5 are shown in F
4. In this case, the bifurcation diagram is much more sim
@Fig. 4~a!# and the desired orbit is also indicated in the e
larged domain shown by the inset. This time the fitness la
scape@Fig. 4~c!# is strongly correlated and almost sing
peaked~some low peaks are observable but once the dom
gP(20.7,20.1) is reached by some candidate solution
quick climbing should be expected.

Actually, the fitness landscapes explored in our pa
show a number of interesting traits. For smallp and/or small
m values~over mc) reveal highly correlated landscapes su
as the one shown in Fig. 4~b!. On the other hand, for highe
m values and/or higher periodicities, the fitness funct
F($g%) shows typically a very rugged, multipeaked patte
However, even in the most rugged landscapes, correlat
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between peak sizes have been observed through our p
This corresponds to bifurcation diagrams where the tar
orbit is confined to a thin, sharp periodic window—see Fi
3~a! and 3~b!. This trends is exploited by the search alg
rithm and in all cases considered, the target solutions
found.

In Figs. 3~c! and 4~c!, the fitness increase of the be
candidate solution is shown. The algorithm easily finds hig
fit solutions and these are rapidly improved. After 100 ge
erations, we always found a controlled orbit with the desir
periodicity. Our results are summarized in Table II where
can see that the algorithm always reaches a fitnessF($g%)
.0.99 in most cases. Only combinations of highm or high
periodicity ~orbits #2, #3, and #4! give lower values of fit-
ness. In our simulations, target orbit points belong to exist
orbits, rounded to three digits of precision, showing the go
7-4
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performance and optimality of our procedure. The same
sults are obtained for the constant feedback system and
tension to higher-dimensional maps is straightforward~al-
though we have only explored two-dimensional system
with very good results!.

IV. DISCUSSION

The problem of how to control unstable orbits in chao
dynamical systems is one of the most interesting app
topics of nonlinear dynamics. The presence of chaos
physical, biological, and chemical systems has been dem

FIG. 3. Fixing p54, and m50.99 ~orbit #4, see tables!: ~a!
Orbit reached for each strength of pulse (g). ~b! Fitness value for
each strength of pulse (g). ~c! Fitness reached by MA in a run alon
100 generations.
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strated in a large number of cases and is acknowledged t
a common phenomenon.

Different techniques of chaos control have been presen
over the last decade, but a systematic method to find
appropriate parameters to stabilize a desired orbit is usua
nontrivial problem. Such difficulties are increased with t
system’s dimensionality, desired periodicity, and degree
instability ~as measured, for example, in terms of the larg
Lyapunov exponent!.

In this paper, we have introduced a technique able to
bilize chaotic dynamical systems into desired periodic orb
These orbits were previously chosen from previously gen
ated bifurcation scenarios, but in fact, the method also wo

FIG. 4. Fixingp55 andm50.9 ~orbit #5, see tables!: ~a! Orbit
reached for each strength of pulse (g). ~b! Fitness value for each
strength of pulse (g). ~c! Fitness reached by MA in a run along 10
generations.
TABLE II. Macroevolutionary algorithm’s ability to find existing orbits. For each orbit, 15 runs has been performed.

p m # orbit Fitness reached g Found # evaluations % runsqi5p

2 0.984 #1 0.99934860 20.708762 2780694 100%
4 0.9 #2 0.99895160.00012 0.135524 19566112 100%
4 0.94 #3 0.99835660 20.043487 26696127 100%
4 0.99 #4 0.99780060 20.077732 3529691 100%
5 0.9 #5 0.99904260 20.632015 2661672 100%
7 0.952 #6 0.95393060.044318 20.861962 29856195 100%
8 0.9 #7 0.99844960 0.043226 2646675 100%
13 0.895 #8 0.98770460.020688 20.907755 3268693 100%
7-5
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for arbitrarily chosen orbits, although the found solutions
limited by the constraints imposed by the underlying eq
tions. Since the desired orbits can actually be impossibl
find, the algorithm is able to obtain a close solution and th
a fitness lower than one.

Our technique involves an evolutionary search meth
based on a simple algorithm. The current candidates are
lected by their position with respect to the average fitne
This allows us to generate extinctions of many possi
sizes, thus enhancing the opportunities for further explo
tion when good solutions are found. Since the fitness la
scapes are correlated~at different levels!, the system is able
to exploit these correlations and find high-fit, optimal so
tions.

The method works well in the two cases considered
extensions to higher dimensions~such as the as He´non sys-
tem or a coupled map lattice@8,24#! seem to behave in a
rather efficient way, although systematic analysis of su
higher-dimensional systems will be presented elsewhere.
.
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interesting to note, however, that our system succeeds w
long-periodic orbits are the targets of the search algorith
Most systematic approaches~with few exceptions@3#! fail to
find the right parameter combinations to reach control wh
periodic orbits withp.4 are used. Although longer tran
sients are observed before the optimum is found, the co
lation in the fitness landscape can be exploited to reac
good solution. Future work should be done to study the
ploratory capacities of our paper for a larger variety of d
namical systems. In this context, further developme
should include approaches able to perform the search w
out a predefined knowledge of the parameter ranges to
explored.
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