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Controlling chaos in unidimensional maps using macroevolutionary algorithms
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We introduce a simple search algorithm that explores the parameter of periodically perturbed discrete maps
in order to find desired orbits through chaos control. The method has been applied to one-dimensional maps but
is easily extendable to higher-dimensional systems. Here, we consider two types of chaos control involving
proportional pulses in the system variabJ@hys. Rev. Lett72, 1455(1994)] and constant feedbadlhys.

Rev. E51, 6239(1995], the first case being presented in detail. It is shown that our method allows a rapid
exploration of parameter space and the finding of high-fitiess controlled solutions close to the target
orbits, even when high periodicities are required.
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. INTRODUCTION Xns1=AuXn(1—X,), 1.2

Chaotic behavior in nonlinear dynamical systems iswhereue[0,1] and Q=[0,1]. For u>u.=0.89247. ..,
known to be suppressed under some given conditions bghaotic dynamics starts to appear. The underlying idea of
using periodic perturbatiorid,2]. These techniques of chaos chaos control is that the chaotic solutions at this domain of
control, particularly the method discovered by Ott, Grebogiparameter space contain an infinite number of periodic, un-
and Yorke(OGY) [1] have been shown to work particularly Stable solutions
well on systems involving low-dimensional dynamical sys- _
tems of many types. Further modifications of the OGY O ={xf . ... xp X =fR(x1).Vil, 13

g]srt:gdop ?g:sgeﬁgtizlgst%;\t/zbg';gnhfuhc'ggsrg‘ﬂ:f o;tkﬁ]ﬁe d 0hich can be stabilized under appropriate periodic perturba-

: T y app lons. The presence of these periodic orbits has important
experimental systems. The implications of these results argonsequences Chaos control has been successfully applied
deep, since chaos control can be used to manipulate dynan%l- :

) 0 several biological systems such as h¢@fiand brain 10]
cal patterns in real systems and can also be used as a SOUhamics and has been suggested to be feasible in control-
of stabilization in population dynamics or neural networks Y 99

[2,4]. Extensions to spatial systems have also been deve'l'—ng expen_mental ecological sy;terfﬂsl].
oped, with potential implications in therafg]. An obvious problem emerging from the study of chaos

There are several known types of chaos control and tw gontrol is the choice of the appropriate parameters together

well-known ways of performing such contrgb) by manipu- with the potential high periodicity of the desired orbits to be

lating the system so as to modify its behavior from chaos tostabmzed. When a good knowledge of the system is avail-

a given desired periodic orbit arid) by stabilizing unstable able, some methodsuch as OGY allow to define a clear

periodic orbits embedded into the strange attractor. Twé:”‘e”of‘ of control by applying small feedback to one of the
. . accessible system parameters. These methods have been ana-
simple techniques of chaos control, the so-called propor:

. _lyzed in depth. However, in many cases, sughpriori
tional [6] and c_onstant feed_ba@Z] _methods, have beef‘ suc knowledge of the dynamics of the systésuch as the loca-
cessfully applied to low-dimensional systems of different

types and, more recently, to the control of spatial cHails tion of stable fixed poinisis not available. Besides, success-

. ; fal control is often limited to low-periodic orbits.
These techniques can be used to control both discrete an . :

. . Other methods have been used involving rather nonspe-
continuous systems and have the advantage of not needlngcﬁ\iC changes in the system variables. One of thEsh
detailed knowledge of the system’s orbits. Two simple meth-a Iies—ir? an additive \)//va 2 constanf feedbagk, (.
ods have been recently proposed: the e@ez-Matas P Y ok (€.,

method[7] and the Parthasarathy-Sinha metli6d

Xne1=T,(X,)+ 7, 1.4

We are interested in controlling-periodic orbits in one- ne1= Tuln) £y (149

dimensional discrete maps of the form wherey e[ —1,1] gives the strength of the pulsand will be
used as relevant parameter in the search algorithm, see be-

Xn+1:f,u,(xn)r (1.1 low).

Another control algorithni7] has been shown to stabilize
wheref ,(x) is a single-parameter quadratic map ande-  chaotic systems by applying proportional pulses to the sys-
long to space stat@. In our paper, we have used the logistic tem variables. In this method, evepyiterations, a pulse of
map defined by strengthy e[ —1,1] is applied as follows:
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Xn+1=f,(x,)(1+7y) for (n mod p)=0, whereu is a vector with_in parameter_s to optimize. In our
case,u={y}, although this could also include.
Xny1=TF,(X,) otherwise. (1.5 These are the criteria followed in order to define similar-

. o . . ity measures:
Most previous stud|e§ involving thgse nonparametric per- (1) The difference between the periodicity of the can-
turbation methods considered specific values of the contrddidate orbit ¢;) and the target orbitp) must to be minimal.

parameters but no general method for finding them was stud=or this reason we define periodicity similarity measure (0
ied. The problem considered here is: given a target orbit ok oper<1) as

periodp

Oper=1—€ i— Pl (2.3
TP ={x],X5, ... Xp;%/ €O}, (1.6) per perl % —P|
. ) . . . _ Wheree,, is the precision in the points that define the target
is it possible to find the set of conditions allowing the stabi-p;t (here we use,,,=10"%). That means that state space

lization of O, toward T for a giveny.? _ Q has been discretized into €hk,)-sized bins in order to
Since there is no analytic treatment to this problem, abstimateq;
i

alternative method is a search in parameter space through (2) An error measures between the points belonging to

the target orbit T®) and the points belonging to the candi-
Burguesg12], it was shown that a neural network-training (@)Y -
date orbit O;ﬁy) is defined as

method based on genetic algorithm evolution was able to

control chaotic maps in one and two dimensions. More re- 1 K

cently[13], genetic algorithms have been used in local con- S=— IT®[1+(j mod p)]

trol to stabilize equilibrium points. Other techniqudst,15 k=1

are based on a reinforcement learning procedure in order to

find the best control strategy to be applied from a set with

prefixed control values. . . . .
Such methods required no previous knowledge about th¥/herek is the minimum common multiple dip, q;} in order

system to be controlled, and all of them have been shown tf guarantee _all_po.mts of both orbits will be con3|de_red. we

work when fixed points or low-periodic orbits are the targetdef'ne the S'”?"?‘”tY measure between both orbitsy,

to be reached. However, high-periodic orbits are seldom con€ 0,11, normalizing in power scale

sidered. Following the same lingse., by exploring the pa- ) ) 3.

rameter space thgrough evolutionary s)t/aaa,r(vpbe cognsidefa Top=0 if 3] e[l,qi]:of'i(1)¢ﬂ,

simple evolutionary algorithm globally searching those con- -

trol parameter from a continuous interval of values such that Torp=2'°%(orb) V% otherwise (2.9

the controlled orbit is closest to the desired tafffét, which

can have high periodicity. where €,,, is the accuracy use@n our simulations,ey,y,

The paper is organized as follows: in Sec. Il, the method=1/256). The choice of the logarithm scaling has been made
is presented. In Sec. IIl, the results of the stabilization forin order to enhance the differences in the underlying fitness
several orbits are analyzed. In Sec. IV, our main results antindscape and thus shorten the search time.
possible extensions are discussed. We have defined the problem in terms of an optimization

of the fitness functiofr (u). We can apply some optimization
Il. SEARCH METHOD method in order to find the strength of pulsed[ —1,1])
that maximizes=({y}). Some methods, such as genetic al-

Our search method is based on a modification of a previgorithms[18—-20, random searcf21], and macroevolution-
ous study of evolutionary optimization on fitness landscapeary algorithms(MA) [16,17] have been tested, being the last
[16,17]. Afirst step in our application requires an appropriateone the more efficient and simple in implementation.

—O™M[1+(j mod a)]f?, (2.4)

definition of a fitness function or objective functiénto be The macroevolutionary algorithm was developed as a
maximized, comparing our given target orfit”? with the simple alternative to genetic algorithms. As these, MA opti-
candidate orbit mizes a fitness function through a parallel search using a
@ . . qonstant numbeN_of possible candidate _solutiorﬁpopula-
O, =1, ... xg}. (2.)  tion). The populationM evolves at each time stegenera-

tion) by applying operators acting over each solution candi-

Hereq; indicates the periodicity of this orbitvhich may or  date. However, MA has monotonous convergence doing

not be equal top). Oﬁf‘i will be generated fixingw and  easier tunning algorithm parameters, and allows us to find

applying a perturbatior”y with periodicity p using control b_e_tter solutions using under less computationally costly con-
defined in Eqs(1.5) or (1.4) over system. ditions.

The proposed fitness function uses a periodicity similarity These specific operators for MA can be summarized as
measure betweeg; and p(oe,), and a similarity measure follows:

between points in orbitsc,,,), so as follows: (1) Selection operatorit allows us to decide which are
candidate solutions surviving in the next generation. The
F(U)=0peT0orb (2.2 stateS; of a given candidate; e M will be given by
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F(u;)
N

N
S(t+1)=alive for F(ui)zzl
=

Si(t+1)=extinct otherwise, (2.6

wheret is generation number.
(2) Colonization operatarit allows us to fill extinct can-
didates in two ways. With a probability, a totally random

solutionu, will be generated. In our case, the random solu-

tion is simply a random numbey e[ —1,1] with uniform
distribution. Otherwise, exploitation of surviving solutions
takes place through colonization: the extinct solution will be
attracted towards the best-fitness solution of populatig. (
Mathematically, this reads as

U(t+ D =up(t) + pA[Up(D — ()] for &>,

u(t+1)=u, for ¢&<r, (2.7
where £€[0,1] is a random numben\ e[ —1,+1] (both
with uniform distributior) andp andr are given constants of
our algorithm. So, we can see thatdescribes a maximum
radius around surviving solutions amdicts as a temperature
parameter.

In our case, a candidate solutionconsists of a strength
of pulse (y) with a predefined parameter range<[ —1,
+17). All simulations has been performed using a popula
tion of N=100 candidates alonG=100 generations, with
algorithm parameters= 0.5 andr varying (such as in simu-

lated annealing22]) using a sigmoidal function defined by

T(t)= (2.9

1+ e(t=G/2)

with a slopey=0.2.
The complete algorithm is presented in Fig. 1.

IIl. RESULTS

The target orbits have been chosen from the bifurcation

scenarios generated by usipg parameters in the chaotic
domain of the logistic map. These scenarios have been o
tained by using different values pfand y. Once a givermp

has been chosen, we have numerically simulated the dyna
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Parameters:
Parameter to optimize: w; = {v}
Algorithm parameters: {N,G,p}
Map parameters: {u, transient size ,T7®}

Algorithm description:
Choose a random M // initialization
For each u; € M, apply fitness function F(u;)
uy + Get best solution of M so as VYu; €M : F(u;) <F(up)
For generation { from 1 to G do
7+ (1 + e¥t-6/9)-1
For each u; € M do
// selection
If F(w) < £, F(u;)/N then
// Colonization
¢ + random(0,1)
If £ <7 then
u; + random // random solution, that is, random
Else
// mizing features between best and extinct
A + random(-1,1)
w; — up 4 pA(u — uy)
End
Apply fitness function F(u;)
End
End
u, + Get best solution of M so as Vu, €M : F(u;) <F(up)
End
Shows u, as the best found solution

FIG. 1. Summary of optimization process to control unidimen-
sional maps using macroevolutionary algorithms.

and fitness. The Lyapunov map structure shown in the first
plot has been in fact deeply analyzed by M. Markus and
co-workers[23]. For this particular case of low periodicity,

the landscape appears rather smotfth a few, localized
exceptiong and one can imagine that a hill climbing by a
standard evolutionary search algorithm will work well. But
we can see that the landscape associated to the second orbit
is much more rugged, with sharp, thin highly fit domafas

the small horned structure on the upper-left parhe situa-

tion gets worse as periodicity increases.

As an example, in Fig. (@) we show the bifurcation dia-
gram that includes orbit #@dvith «=0.99) as a thin periodic
window. Here, the control parameter is the strength
ve[—1,+1] (see Tables | and )l For positive values of the

ulse strength no bounded orbit is found. The periodic win-
ows displayed by this diagram are all very localized and our
target is shown in the inset plgfor —0.08<y<—0.07).

m_

ics of the perturbed map by applying different strengths. This TABLE I. Table with the target orbits that have been used in the

leads to a rich variety of orbits of many different periodici-

ties. From these orbits we chose a few as target solutions

(listed in Table J. Here, lowp=2 but also highp=13 pe-
riodicities have been used.

Let us first consider the observed structure of the fithes
landscapes. In Fig.(2), the Lyapunov exponent correspond-
ing to a logistic map with periodic perturbations each four
iterations is shown. In Figs.(B) and Zc), we have plotted
the fitness landscapéy{y,u}) of different orbits by vary-
ing u andy (here, darker points mean higher fitness values
Orbits #2 and #6 have been usg@ge Table ). Not surpris-
ingly, the functionF({vy,u«}) in Fig. 2(b) shows a close re-
semblance with the Lyapunov plot shown in Figa)2 This is

simulations.

i (p) (p)
# orbit TW), o

0.710 0.236
0.841 0.481 0.899 0.372
0.344 0.848 0.485 0.898
0.316 0.856 0.490 0.913
0.788 0.601 0.863 0.425 0.324
0.231 0.676 0.834 0.527 0.131 0.434 0.935
0.900 0.338 0.806 0.564 0.885 0.365 0.835 0.497
0.687 0.769 0.635 0.830 0.506 0.895 0.337 0.800
0.573 0.876 0.390 0.079 0.259

S

1
2
3
4
5
6
7
8

due to the underlying relationship between orbit complexity:
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FIG. 2. Varyingu and strength
of pulse (y). In (a), Lyapunov ex-
ponent for orbit #2 is represented
(p=4). In (b), fitness function
F({y,u}) (high values in black
for orbit #2. In(c), fitness function
F({y,u}) for orbit #6 (p=7).

0.8 T T T T
=1 -0.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1

The corresponding fitness, multipeaked landscape is showretween peak sizes have been observed through our paper.
in Fig. 3(b). The same plots for the orbit #5 are shown in Fig. This corresponds to bifurcation diagrams where the target
4. In this case, the bifurcation diagram is much more simpleorbit is confined to a thin, sharp periodic window—see Figs.
[Fig. 4@] and the desired orbit is also indicated in the en-3(a) and 3b). This trends is exploited by the search algo-
larged domain shown by the inset. This time the fitness landrithm and in all cases considered, the target solutions are
scape[Fig. 4(c)] is strongly correlated and almost single found.
peakedsome low peaks are observable but once the domain In Figs. 3c) and 4c), the fithess increase of the best
ve(—0.7-0.1) is reached by some candidate solution, acandidate solution is shown. The algorithm easily finds high-
quick climbing should be expected. fit solutions and these are rapidly improved. After 100 gen-
Actually, the fitness landscapes explored in our papeerations, we always found a controlled orbit with the desired
show a number of interesting traits. For snfalind/or small  periodicity. Our results are summarized in Table Il where we
w values(over u) reveal highly correlated landscapes suchcan see that the algorithm always reaches a fitk€$s})
as the one shown in Fig(d). On the other hand, for higher >0.99 in most cases. Only combinations of highor high
u values and/or higher periodicities, the fithess functionperiodicity (orbits #2, #3, and #4give lower values of fit-
F({y}) shows typically a very rugged, multipeaked pattern.ness. In our simulations, target orbit points belong to existing
However, even in the most rugged landscapes, correlationsbits, rounded to three digits of precision, showing the good
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FIG. 3. Fixing p=4, and u=0.99 (orbit #4, see tablgs (a) FIG. 4. Fixingp=5 andu=0.9 (orbit #5, see tablgs(a) Orbit

Orbit reached for each strength of pulsg) ((b) Fitness value for reached for each strength of pulsg)( (b) Fitness value for each
each strength of pulseyj. (c) Fitness reached by MAin a run along strength of pulse). (c) Fitness reached by MA in a run along 100
100 generations. generations.

erformance and ontimality of our procedure. The same re§trated in a large number of cases and is acknowledged to be
P b y P ' a common phenomenon.

fggﬁoﬂi;tﬁgﬂggﬁg ézgigr?glsﬁgge?gZ?f;gi{f;?\:vn@nd €X" Different techniques of chaos contro! have been prgsented
though we have only explored two-dimensional Systemsover th(_e last decade, but a s_y_stematlc_methoq to find the
with very good resulfs appropriate parameters to s_tablllz_e a des!red orbit is u_sually a
nontrivial problem. Such difficulties are increased with the
system’s dimensionality, desired periodicity, and degree of
IV. DISCUSSION instability (as measured, for example, in terms of the largest
Lyapunov exponent
The problem of how to control unstable orbits in chaotic  In this paper, we have introduced a technique able to sta-
dynamical systems is one of the most interesting appliedbilize chaotic dynamical systems into desired periodic orbits.
topics of nonlinear dynamics. The presence of chaos imThese orbits were previously chosen from previously gener-
physical, biological, and chemical systems has been demomted bifurcation scenarios, but in fact, the method also works

TABLE Il. Macroevolutionary algorithm’s ability to find existing orbits. For each orbit, 15 runs has been performed.

p m # orbit Fitness reached vy Found # evaluations % rurgg=p
2 0.984 #1 0.9993480 —0.708762 2786194 100%
4 0.9 #2 0.998951 0.00012 0.135524 1956112 100%
4 0.94 #3 0.9983560 —0.043487 2669 127 100%
4 0.99 #4 0.9978060 —0.077732 352991 100%
5 0.9 #5 0.999042 0 —0.632015 266172 100%
7 0.952 #6 0.9539360.044318 —0.861962 2985195 100%
8 0.9 #7 0.9984480 0.043226 264675 100%
13 0.895 #8 0.9877040.020688 —0.907755 326893 100%
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for arbitrarily chosen orbits, although the found solutions areinteresting to note, however, that our system succeeds when
limited by the constraints imposed by the underlying equaiong-periodic orbits are the targets of the search algorithm.
tions. Since the desired orbits can actually be impossible tdlost systematic approachésith few exceptiong3]) fail to
find, the algorithm is able to obtain a close solution and thudind the right parameter combinations to reach control when
a fithess lower than one. periodic orbits withp>4 are used. Although longer tran-
Our technique involves an evolutionary search methodsients are observed before the optimum is found, the corre-
based on a simple algorithm. The current candidates are sktion in the fithess landscape can be exploited to reach a
lected by their position with respect to the average fithessgood solution. Future work should be done to study the ex-
This allows us to generate extinctions of many possibleploratory capacities of our paper for a larger variety of dy-
sizes, thus enhancing the opportunities for further exploranamical systems. In this context, further developments
tion when good solutions are found. Since the fitness landshould include approaches able to perform the search with-
scapes are correlatédt different levelg the system is able out a predefined knowledge of the parameter ranges to be
to exploit these correlations and find high-fit, optimal solu-explored.
tions.
The_method _Works \_NeII in_ the two cases considered and ACKNOWLEDGMENTS
extensions to higher dimensiofsuch as the as Hen sys-
tem or a coupled map lattick8,24]) seem to behave in a We thank Javier Gamarra for useful discussions. This
rather efficient way, although systematic analysis of suctwork has been supported by CICYT Grant No. PB97-0693
higher-dimensional systems will be presented elsewhere. It ignd by the Santa Fe Institu(R.V.S).
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